Logspline Density Estimation under Censoring and Truncation
نویسندگان
چکیده
In this paper we consider logspline density estimation for data that may be lefttruncated or right-censored. For randomly left-truncated and right-censored data the product-limit estimator is known to be a consistent estimator of the survivor function, having a faster rate of convergence than many density estimators. The product-limit estimator and B-splines are used to construct the logspline density estimate for possibly censored or truncated data. Rates of convergence are established when the log-density function is assumed to be in a Besov space. An algorithm involving a procedure similar to maximum likelihood, stepwise knot addition, and stepwise knot deletion is proposed for the estimation of the density function based upon sample data. Numerical examples are used to show the ®nite-sample performance of inference based on the logspline density estimation.
منابع مشابه
Semiparametric likelihood inference for left-truncated and right-censored data.
This paper proposes a new estimation procedure for the survival time distribution with left-truncated and right-censored data, where the distribution of the truncation time is known up to a finite-dimensional parameter vector. The paper expands on the Vardis multiplicative censoring model (Vardi, 1989. Multiplicative censoring, renewal processes, deconvolution and decreasing density: non-parame...
متن کاملBivariate Competing Risks Models Under Random Left Truncation and Right Censoring
In survival or reliability studies, it is common to have truncated data due to the limited time span of the study or dropouts of the subjects for various reasons. The estimation of survivor function under left truncation was first discussed by Kaplan and Meier by extending the well known productlimit estimator of the survivor function. The focus of this paper is on the nonparametric estimation ...
متن کاملLocal linear density estimation for filtered survival data, with bias correction
A class of local linear kernel density estimators based on weighted least squares kernel estimation is considered within the framework of Aalen’s multiplicative intensity model. This model includes the filtered data model that, in turn, allows for truncation and/or censoring in addition to accommodating unusual patterns of exposure as well as occurrence. It is shown that the local linear estima...
متن کاملAsymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data
Kernel density estimators are the basic tools for density estimation in non-parametric statistics. The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in which the bandwidth is varied depending on the location of the sample points. In this paper, we initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...
متن کاملSmoothing survival densities in practice
Recently Nielsen, Tanggaard and Jones (2009) suggested a class of local linear density estimation based on filtered data. Filtered data is defined as survival data following Aalen multiplicative hazard model, Aalen (1978), and include independent identically distributed observations and their possible independent left truncation or right censoring. In this paper we develop cross-validation for ...
متن کامل